0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 4 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 InliningProof (UPPER BOUND(ID), 53 ms)
↳12 CpxRNTS
↳13 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 120 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 10 ms)
↳20 CpxRNTS
↳21 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 243 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 39 ms)
↳26 CpxRNTS
↳27 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 94 ms)
↳30 CpxRNTS
↳31 IntTrsBoundProof (UPPER BOUND(ID), 4 ms)
↳32 CpxRNTS
↳33 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳34 CpxRNTS
↳35 IntTrsBoundProof (UPPER BOUND(ID), 270 ms)
↳36 CpxRNTS
↳37 IntTrsBoundProof (UPPER BOUND(ID), 11 ms)
↳38 CpxRNTS
↳39 FinalProof (⇔, 0 ms)
↳40 BOUNDS(1, 1)
f(n__f(n__a)) → f(n__g(f(n__a)))
f(X) → n__f(X)
a → n__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(X)
activate(X) → X
f(n__f(n__a)) → f(n__g(f(n__a))) [1]
f(X) → n__f(X) [1]
a → n__a [1]
g(X) → n__g(X) [1]
activate(n__f(X)) → f(X) [1]
activate(n__a) → a [1]
activate(n__g(X)) → g(X) [1]
activate(X) → X [1]
f(n__f(n__a)) → f(n__g(f(n__a))) [1]
f(X) → n__f(X) [1]
a → n__a [1]
g(X) → n__g(X) [1]
activate(n__f(X)) → f(X) [1]
activate(n__a) → a [1]
activate(n__g(X)) → g(X) [1]
activate(X) → X [1]
f :: n__a:n__f:n__g → n__a:n__f:n__g n__f :: n__a:n__f:n__g → n__a:n__f:n__g n__a :: n__a:n__f:n__g n__g :: n__a:n__f:n__g → n__a:n__f:n__g a :: n__a:n__f:n__g g :: n__a:n__f:n__g → n__a:n__f:n__g activate :: n__a:n__f:n__g → n__a:n__f:n__g |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
a
g
activate
f
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
n__a => 0
a -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 1 }→ g(X) :|: z = 1 + X, X >= 0
activate(z) -{ 1 }→ f(X) :|: z = 1 + X, X >= 0
activate(z) -{ 1 }→ a :|: z = 0
f(z) -{ 2 }→ f(1 + (1 + 0)) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
g(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
a -{ 1 }→ 0 :|:
g(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
a -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 1 }→ f(X) :|: z = 1 + X, X >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 2 }→ 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X'
f(z) -{ 2 }→ f(1 + (1 + 0)) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
g(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
a -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ f(z - 1) :|: z - 1 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 2 }→ f(1 + (1 + 0)) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + z :|: z >= 0
g(z) -{ 1 }→ 1 + z :|: z >= 0
{ g } { f } { a } { activate } |
a -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ f(z - 1) :|: z - 1 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 2 }→ f(1 + (1 + 0)) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + z :|: z >= 0
g(z) -{ 1 }→ 1 + z :|: z >= 0
a -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ f(z - 1) :|: z - 1 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 2 }→ f(1 + (1 + 0)) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + z :|: z >= 0
g(z) -{ 1 }→ 1 + z :|: z >= 0
g: runtime: ?, size: O(n1) [1 + z] |
a -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ f(z - 1) :|: z - 1 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 2 }→ f(1 + (1 + 0)) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + z :|: z >= 0
g(z) -{ 1 }→ 1 + z :|: z >= 0
g: runtime: O(1) [1], size: O(n1) [1 + z] |
a -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ f(z - 1) :|: z - 1 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 2 }→ f(1 + (1 + 0)) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + z :|: z >= 0
g(z) -{ 1 }→ 1 + z :|: z >= 0
g: runtime: O(1) [1], size: O(n1) [1 + z] |
a -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ f(z - 1) :|: z - 1 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 2 }→ f(1 + (1 + 0)) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + z :|: z >= 0
g(z) -{ 1 }→ 1 + z :|: z >= 0
g: runtime: O(1) [1], size: O(n1) [1 + z] f: runtime: ?, size: O(n1) [2 + z] |
a -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ f(z - 1) :|: z - 1 >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 2 }→ f(1 + (1 + 0)) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + z :|: z >= 0
g(z) -{ 1 }→ 1 + z :|: z >= 0
g: runtime: O(1) [1], size: O(n1) [1 + z] f: runtime: O(1) [3], size: O(n1) [2 + z] |
a -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s' :|: s' >= 0, s' <= 1 * (z - 1) + 2, z - 1 >= 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 5 }→ s :|: s >= 0, s <= 1 * (1 + (1 + 0)) + 2, z = 1 + 0
f(z) -{ 1 }→ 1 + z :|: z >= 0
g(z) -{ 1 }→ 1 + z :|: z >= 0
g: runtime: O(1) [1], size: O(n1) [1 + z] f: runtime: O(1) [3], size: O(n1) [2 + z] |
a -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s' :|: s' >= 0, s' <= 1 * (z - 1) + 2, z - 1 >= 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 5 }→ s :|: s >= 0, s <= 1 * (1 + (1 + 0)) + 2, z = 1 + 0
f(z) -{ 1 }→ 1 + z :|: z >= 0
g(z) -{ 1 }→ 1 + z :|: z >= 0
g: runtime: O(1) [1], size: O(n1) [1 + z] f: runtime: O(1) [3], size: O(n1) [2 + z] a: runtime: ?, size: O(1) [0] |
a -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s' :|: s' >= 0, s' <= 1 * (z - 1) + 2, z - 1 >= 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 5 }→ s :|: s >= 0, s <= 1 * (1 + (1 + 0)) + 2, z = 1 + 0
f(z) -{ 1 }→ 1 + z :|: z >= 0
g(z) -{ 1 }→ 1 + z :|: z >= 0
g: runtime: O(1) [1], size: O(n1) [1 + z] f: runtime: O(1) [3], size: O(n1) [2 + z] a: runtime: O(1) [1], size: O(1) [0] |
a -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s' :|: s' >= 0, s' <= 1 * (z - 1) + 2, z - 1 >= 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 5 }→ s :|: s >= 0, s <= 1 * (1 + (1 + 0)) + 2, z = 1 + 0
f(z) -{ 1 }→ 1 + z :|: z >= 0
g(z) -{ 1 }→ 1 + z :|: z >= 0
g: runtime: O(1) [1], size: O(n1) [1 + z] f: runtime: O(1) [3], size: O(n1) [2 + z] a: runtime: O(1) [1], size: O(1) [0] |
a -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s' :|: s' >= 0, s' <= 1 * (z - 1) + 2, z - 1 >= 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 5 }→ s :|: s >= 0, s <= 1 * (1 + (1 + 0)) + 2, z = 1 + 0
f(z) -{ 1 }→ 1 + z :|: z >= 0
g(z) -{ 1 }→ 1 + z :|: z >= 0
g: runtime: O(1) [1], size: O(n1) [1 + z] f: runtime: O(1) [3], size: O(n1) [2 + z] a: runtime: O(1) [1], size: O(1) [0] activate: runtime: ?, size: O(n1) [1 + z] |
a -{ 1 }→ 0 :|:
activate(z) -{ 4 }→ s' :|: s' >= 0, s' <= 1 * (z - 1) + 2, z - 1 >= 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ 0 :|: z = 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 5 }→ s :|: s >= 0, s <= 1 * (1 + (1 + 0)) + 2, z = 1 + 0
f(z) -{ 1 }→ 1 + z :|: z >= 0
g(z) -{ 1 }→ 1 + z :|: z >= 0
g: runtime: O(1) [1], size: O(n1) [1 + z] f: runtime: O(1) [3], size: O(n1) [2 + z] a: runtime: O(1) [1], size: O(1) [0] activate: runtime: O(1) [9], size: O(n1) [1 + z] |